Package: fad 0.9-2

fad: Factor Analysis for Data

Compute maximum likelihood estimators of parameters in a Gaussian factor model using the the matrix-free methodology described in Dai et al. (2020) <doi:10.1080/10618600.2019.1704296>. In contrast to the factanal() function from 'stats' package, fad() can handle high-dimensional datasets where number of variables exceed the sample size and is also substantially faster than the EM algorithms.

Authors:Somak Dutta [aut, cre], Fan Dai [aut], Ranjan Maitra [ctb]

fad_0.9-2.tar.gz
fad_0.9-2.zip(r-4.5)fad_0.9-2.zip(r-4.4)fad_0.9-2.zip(r-4.3)
fad_0.9-2.tgz(r-4.5-x86_64)fad_0.9-2.tgz(r-4.5-arm64)fad_0.9-2.tgz(r-4.4-x86_64)fad_0.9-2.tgz(r-4.4-arm64)fad_0.9-2.tgz(r-4.3-x86_64)fad_0.9-2.tgz(r-4.3-arm64)
fad_0.9-2.tar.gz(r-4.5-noble)fad_0.9-2.tar.gz(r-4.4-noble)
fad_0.9-2.tgz(r-4.4-emscripten)fad_0.9-2.tgz(r-4.3-emscripten)
fad.pdf |fad.html
fad/json (API)

# Install 'fad' in R:
install.packages('fad', repos = c('https://somakd.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/somakd/fad/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

openblascpp

2.78 score 3 stars 4 scripts 285 downloads 2 exports 5 dependencies

Last updated 1 years agofrom:94f1548d02. Checks:1 ERROR, 11 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesFAILMar 06 2025
R-4.5-win-x86_64WARNINGMar 06 2025
R-4.5-mac-x86_64WARNINGMar 06 2025
R-4.5-mac-aarch64WARNINGMar 06 2025
R-4.5-linux-x86_64WARNINGMar 06 2025
R-4.4-win-x86_64WARNINGMar 06 2025
R-4.4-mac-x86_64WARNINGMar 06 2025
R-4.4-mac-aarch64WARNINGMar 06 2025
R-4.4-linux-x86_64WARNINGMar 06 2025
R-4.3-win-x86_64WARNINGMar 06 2025
R-4.3-mac-x86_64WARNINGMar 06 2025
R-4.3-mac-aarch64WARNINGMar 06 2025

Exports:fadfads

Dependencies:latticeMatrixRcppRcppEigenRSpectra